Analog Electronic

ENEE236

BJT AC Analysis
Chapter 5

Small Signal ac Equivalent Circuit

$>$ In order to simplify the analysis, we replace the Transistor by an equivalent circuit (model)
$>$ An AC model represents the AC characteristics of the transistor.
> A model uses circuit elements that approximate the behavior of the transistor.
> There are two models commonly used in small signal AC analysis of a transistor:

- r_{e} model
- Hybrid equivalent model

Modeling Two-Port Networks

$>$ Two-port parameters can be determined for a given network.
$>$ Additionally, two-port parameters might be specified for a certain device by the manufacturer (such as h-parameter values for a transistor).
$>$ How are these parameters used?
$>$ They are used to form a circuit model for the device or circuit. A circuit model is developed using the two-port parameter equations.

Two-port networks

> Suppose that a network N has two ports as shown below. How could it be represented or modeled?
> A common way to represent such a network is to use one of 6 possible two-port networks.
$>$ These networks are circuits that are based on one of 6 possible sets of two-port equations. These equations are simply different combinations of two equations that relate the variables V_{1}, V_{2}, I_{1}, and I_{2} to one another. The coefficients in these equations are referred to as two-port parameters.

ENEE234 - Circuit Analysis

Note that $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{~V}_{1}$, and V_{2} are labeled as shown by convention. Often there is a common negative terminal between the input and the output so the figure above could be redrawn as:

ENEE236

Development of the h-parameter model:

One possible circuit model could be developed by treating one of the two-port parameter equations as a KVL equation and the other as a KCL equation (illustrate). This results in the following circuit.
h -parameter equations:
$\mathrm{V}_{1}=\mathrm{h}_{11} \cdot \mathrm{I}_{1}+\mathrm{h}_{12} \cdot \mathrm{~V}_{2}$ $\mathrm{I}_{2}=\mathrm{h}_{21} \cdot \mathrm{I}_{1}+\mathrm{h}_{22} \cdot \mathrm{~V}_{2}$

$\mathrm{h}_{11}=\left.\frac{\mathrm{V}_{1}}{\mathrm{I}_{1}}\right|_{\mathrm{V}_{2}=0}$

$$
\mathrm{h}_{21}=\left.\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}}\right|_{\mathrm{v}_{2}=0}
$$

$$
\begin{aligned}
& \mathrm{h}_{12}=\left.\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right|_{\mathrm{I}_{1}=0} \\
& \mathrm{~h}_{22}=\left.\frac{\mathrm{I}_{2}}{\mathrm{~V}_{2}}\right|_{\mathrm{I}_{1}=0}
\end{aligned}
$$

ENEE236

Development of the h-parameter model of BJT:

For A BJT the equivalent h parameter model can be described by the following equations:

7

ENEE236
Summary:
Note: This page is for information only

> | Z - parameter equations $:$ |
| :--- |
| $\mathrm{V}_{1}=\mathrm{z}_{11} \cdot \mathrm{I}_{1}+\mathrm{Z}_{12} \cdot \mathrm{I}_{2}$ |
| $\mathrm{~V}_{2}=\mathrm{Z}_{21} \cdot \mathrm{I}_{1}+\mathrm{z}_{22} \cdot \mathrm{I}_{2}$ |

y-parameter equations:
$\mathrm{I}_{1}=\mathrm{y}_{11} \cdot \mathrm{~V}_{1}+\mathrm{y}_{12} \cdot \mathrm{~V}_{2}$
$\mathrm{I}_{2}=\mathrm{y}_{21} \cdot \mathrm{~V}_{1}+\mathrm{y}_{22} \cdot \mathrm{~V}_{2}$

h - parameter equations $:$
$\mathrm{V}_{1}=\mathrm{h}_{11} \cdot \mathrm{I}_{1}+\mathrm{h}_{12} \cdot \mathrm{~V}_{2}$
$\mathrm{I}_{2}=\mathrm{h}_{21} \cdot \mathrm{I}_{1}+\mathrm{h}_{22} \cdot \mathrm{~V}_{2}$
0

Two sets of measurements are made on a two-port resistive circuit. The first set is made with port 2 open, and the second set is made with port 2 short-circuited. The results are as follows:

Port 2 Open

$$
\begin{aligned}
& V_{1}=10 \mathrm{mV} \\
& I_{1}=10 \mu \mathrm{~A} \\
& V_{2}=-40 \mathrm{~V}
\end{aligned}
$$

Port 2 Short-Circuited

h - parameter equations :
$\mathrm{V}_{1}=\mathrm{h}_{11} \cdot \mathrm{I}_{1}+\mathrm{h}_{12} \cdot \mathrm{~V}_{2}$
$\mathrm{I}_{2}=\mathrm{h}_{21} \cdot \mathrm{I}_{1}+\mathrm{h}_{22} \cdot \mathrm{~V}_{2}$

$$
\begin{aligned}
& V_{1}=24 \mathrm{mV} \\
& I_{1}=20 \mu \mathrm{~A} \\
& I_{2}=1 \mathrm{~mA}
\end{aligned}
$$

$$
h_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{V_{2}=0}
$$

Find the h parameters of the circuit.

$$
=\frac{24 \times 10^{-3}}{20 \times 10^{-6}}=1.2 \mathrm{k} \Omega
$$

$$
\begin{array}{ll}
h_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{V_{2}=0} \Omega, & h_{12}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{1}=0}, \\
h_{21}=\left.\frac{I_{2}}{I_{1}}\right|_{V_{2}=0}, & h_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{I_{1}=0} \mathrm{~S} .
\end{array}
$$

$$
\begin{aligned}
h_{21} & =\left.\frac{I_{2}}{I_{1}}\right|_{v_{2}-0} \\
& =\frac{10^{-3}}{20 \times 10^{-6}}=50
\end{aligned}
$$

BJT Configurations

- Common Emitter
- Common Base
- Common Collector

Terminated Two port network Includes source and load

Common Emitter Configuration

(inverting configuration, provides voltage and current gain)

Typical Data sheet parameter values
$h_{i e} \approx 1600 \Omega$
$h_{r e} \approx 0.0002$
$h_{f e} \approx 80$
$h_{o e} \approx 20.10^{-6}$ Siemens
h - parameter equations :
$\mathrm{V}_{\mathrm{bc}}=\mathrm{h}_{\mathrm{ic}} \cdot \mathrm{I}_{\mathrm{b}}+\mathrm{h}_{\mathrm{re}} \cdot \mathrm{V}_{\mathrm{ce}}$
Detailed Mode

E
Simplified Model

Common Emitter and Common Collector Configuration

Value of hie

Base Emitter is a pn junction similar to a diode hie is the dynamic resistance of the pn junction

In a diode:

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{d}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{DQ}}} \Rightarrow \\
& \mathrm{~h}_{\mathrm{ie}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{BQ}}}=\frac{\mathrm{V}_{\mathrm{T}}}{\frac{\mathrm{I}_{\mathrm{CQ}}}{\mathrm{~h}_{\mathrm{fe}}}}=\frac{\mathrm{h}_{\mathrm{fe}} \mathrm{~V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{CQ}}} \\
& \mathrm{~h}_{\mathrm{fe}}=\beta \\
& \mathrm{V}_{\mathrm{T}}=25.69 \mathrm{mV} @ 25^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\mathrm{I}_{\mathrm{BQ}} \text { dc value of base current }
$$

$$
\mathrm{I}_{\mathrm{CQ}} \text { dc value of collector current }
$$

Common Collector

provides current gain and no voltage gain)

Same Model of Common Emitter will be used due to the similarities between them and for simplicity

Common-Base Configuration

h - parameter equations $:$
$\mathrm{V}_{\mathrm{eb}}=\mathrm{h}_{\mathrm{ib} \mid} \cdot \mathrm{I}_{\mathrm{e}}+\mathrm{h}_{\mathrm{rb}} \cdot \mathrm{V}_{\mathrm{cb}}$
$\mathrm{I}_{\mathrm{c}}=\mathrm{h}_{\mathrm{fb}} \cdot \mathrm{I}_{\mathrm{e}}+\mathrm{h}_{\mathrm{ob}} \cdot \mathrm{V}_{\mathrm{cb}}$

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{ib}}=\left.\frac{\mathrm{V}_{\mathrm{EB}}}{\mathrm{I}_{\mathrm{E}}}\right|_{\mathrm{V}_{\mathrm{CB}}=0} \\
& \mathrm{~h}_{\mathrm{fb}}=\alpha=\left.\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{E}}}\right|_{\mathrm{V}_{\mathrm{CB}}=0}
\end{aligned}
$$

$$
\begin{aligned}
& h_{\mathrm{rb}}=\left.\frac{\mathrm{V}_{\mathrm{EB}}}{\mathrm{~V}_{\mathrm{CB}}}\right|_{\mathrm{I}_{\mathrm{E}}=0} \\
& \mathrm{~h}_{\mathrm{ob}}=\left.\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{~V}_{\mathrm{CB}}}\right|_{\mathrm{I}_{\mathrm{E}}=0}
\end{aligned}
$$

Common-Base Configuration

Simplified Equivalent Circuit

Common-Base Configuration

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{ib}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{EQ}}} \\
& \mathrm{~h}_{\mathrm{fb}}=\alpha \\
& \mathrm{V}_{\mathrm{T}}=25.69 \mathrm{mV} @ 25^{\circ} \mathrm{C} \\
& \mathrm{~h}_{\mathrm{ie}}>\mathrm{h}_{\mathrm{ib}}
\end{aligned}
$$

BJT Amplifier Analysis Example

BJT Amplifier Analysis

When Analyzing Amplifier Circuits, we usually want to find some or all of the following quantities:

1) $A v=V o / V i$, small signal voltage gain
2) $A \mathrm{i}=\mathrm{io} / \mathrm{ii}$, small signal current gain
3) $\mathrm{Zi} \quad$ Input Impedance
4) Zo Output Impedance

BJT Amplifier Analysis

Solution: (with Rs=0)
We draw the ac small signal equivalent circuit
Capacitors ==> replaced by short circuit DC sources are killed ,

$h_{i b}=\frac{V_{T}}{I_{E Q}}$

$$
\mathrm{h}_{\mathrm{fb}}=\alpha \cong 1
$$

I_{EQ} must be calculated from DC analysis

DC Analysis

DC Equivalent Circuit:
-Cap ==> open
-Kill ac sources ==>

$$
\begin{gathered}
\mathbf{1 O}=5 \mathrm{k} \Omega . \mathbf{I}_{\mathrm{EQ}}+\mathrm{V}_{\mathrm{EB}} \\
\mathbf{I}_{\mathrm{EQ}}=\frac{\mathbf{1 O}-\mathbf{O} .7}{5 \mathrm{k} \Omega}=\mathbf{1 . 8 6} \mathbf{~ m A} \\
\mathrm{h}_{\mathrm{ib}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{EQ}}}=\frac{25.69 \mathrm{mV}}{1.86 \mathrm{~mA}}=13.98 \Omega
\end{gathered}
$$

Ac ss equivalent circuit

$$
\begin{aligned}
& \text { 1) } \mathrm{A}_{\mathrm{v}}=\frac{v_{o}}{v_{i}} \\
& v_{o}=i_{o} .4 \mathrm{k} \Omega \\
& i_{o}=h_{f \beta} \cdot i_{e} \\
& i_{e}=\frac{v_{i}}{h_{i b}} \\
& \mathrm{~A}_{\mathrm{V}}=\frac{v_{o}}{v_{i}}=\frac{v_{o}}{i_{o}} \cdot \frac{i_{o}}{i_{e}} \cdot \frac{i_{e}}{v_{i}} \\
& \mathrm{~A}_{\mathrm{v}}=(4 \mathrm{k} \Omega) \cdot\left(h_{f b}\right) \cdot\left(\frac{1}{h_{i b}}\right) \\
& =(4 \mathrm{k} \Omega) .(1) \cdot\left(\frac{1}{13.98}\right)=286>1
\end{aligned}
$$

Current Gain Ai

$$
\begin{gathered}
\text { 2) } \mathrm{A}_{\mathrm{i}}=\frac{i_{o}}{i_{i}} \\
i_{o}=h_{f b} i_{e} \\
i_{e}=i_{i} \frac{5 \mathrm{k} \Omega}{5 \mathrm{k} \Omega+h_{i b}}
\end{gathered}
$$

$$
\Rightarrow \mathrm{A}_{\mathrm{i}}=\frac{i_{o}}{i_{i}}=\frac{i_{o}}{i_{e}} \cdot \frac{i_{e}}{i_{i}}
$$

$$
\Rightarrow \mathrm{A}_{\mathrm{i}}=\left(h_{f b}\right)\left(\frac{5 \mathrm{k} \Omega}{5 \mathrm{k} \Omega+h_{i b}}\right)
$$

$$
=(1)\left(\frac{5 \mathrm{k} \Omega}{5 \mathrm{k} \Omega+13.98}\right)<1
$$

Zi \& Zo

3) Input Impedance

$$
Z_{\mathrm{i}}=\left(h_{i b} / / 5 \mathrm{k} \Omega\right)=\left(\frac{h_{i b} .5 \mathrm{k} \Omega}{5 \mathrm{k} \Omega+h_{i b}}\right)
$$

4) Output Impedance
$\left.Z_{o}\right|_{\text {all independant sources killed (i.e. } \mathrm{Vi}=0 \text { or short) }}=4 \mathrm{k} \Omega$

With Presence of Rs

with R_{s}
$i_{\mathrm{i}}=\frac{v_{\mathrm{i}}}{Z_{\mathrm{i}}+R_{s}}$

For Rs $=50 \Omega$

$\mathrm{A}_{\mathrm{v}}=62.5$
For Rs $=10 \mathrm{k} \Omega$
$\mathrm{A}_{\mathrm{v}}=0.4$

Example: Common Emitter (CE)

1) From DC Analysis, we find Q - point and value of
$\mathrm{h}_{\mathrm{ie}}=\frac{V_{T}}{I_{B Q}}$

as seen from the base
$V_{T H}=\frac{10 \mathrm{k} \Omega}{10 \mathrm{k} \Omega+50 \mathrm{k} \Omega} .24 \mathrm{~V}=4 \mathrm{~V}$
$\mathrm{R}_{\text {тн }}=10 \mathrm{k} \Omega \Omega / / 5 \mathrm{k} \Omega=8.33 \mathrm{k} \Omega$

$$
\frac{R_{T H}}{\beta+1}
$$

$$
\begin{aligned}
& 4=8.33 \mathrm{k} \Omega . \mathrm{I}_{\mathrm{B}}+\mathrm{V}_{\mathrm{BE}}+2.2 \mathrm{k} \Omega . \mathrm{I}_{\mathrm{E}} \\
& \text { But, } \\
& \text { Solve for } \mathrm{I}_{\mathrm{E}}=(1+\beta) \mathrm{I}_{\mathrm{B}} \\
& \frac{8.33 \mathrm{k} \Omega}{\frac{(1+50)}{4}}+2.2 \mathrm{k} \Omega \\
& \mathrm{~h}_{\mathrm{ie}}=\frac{V_{T}}{I_{B Q}}=\frac{25.69 \mathrm{mV}}{\frac{1.4 \mathrm{~mA}}{51}}=928 \Omega
\end{aligned}
$$

Here we have base reflected to emitter
$I_{B} \Rightarrow I_{E}=(\beta+1) I_{B}$
$R_{B} \Rightarrow \frac{R_{B}}{\beta+1}$

AC small signal Equivalent Circuit

1) $\mathrm{A}_{\mathrm{V}}=\frac{v_{o}}{v_{i}}$

$$
\mathrm{A}_{\mathrm{V}}=\frac{v_{o}}{v_{i}}=\frac{v_{o}}{i_{b}} \cdot \frac{i_{b}}{v_{i}}
$$

$v_{o}=-h_{f e} i_{b} .\left(\mathrm{R}_{3} / / \mathrm{R}_{7}\right)$
$=-h_{f e} \cdot\left(\mathrm{R}_{3} / / \mathrm{R}_{7}\right) \cdot\left(\frac{1}{h_{i e}}\right)$
$i_{b}=\frac{v_{i}}{h_{i e}}$
$=-50 .(3.8 \mathrm{k} \Omega / / 1 \mathrm{k} \Omega) \cdot\left(\frac{1}{928 \Omega}\right)=-42.7$

AC small signal Equivalent Circuit

$$
\text { 2) } \begin{aligned}
\mathrm{Z}_{\mathrm{I}} & =\mathrm{R}_{\mathrm{TH}} / / \mathrm{h}_{\mathrm{ie}} \\
& =8.33 \mathrm{k} \Omega / / 928 \Omega
\end{aligned}
$$

only elements to the right of arrow are considered according to the given direction of the arrow
3) $\left.Z_{\mathrm{o}}\right|_{\text {all independant sources } \text { killed (i.e. } \mathrm{Vi}=0 \text { or short) }}=3.8 \mathrm{k} \Omega$
here $\mathrm{h}_{\mathrm{fe}} \cdot \mathrm{i}_{\mathrm{b}}=0$ since $\mathrm{i}_{\mathrm{b}}=0(\mathrm{vi}=0 \quad$ - killed $)$

AC small signal Equivalent Circuit

$$
\begin{aligned}
& \text { 4) } \mathrm{A}_{\mathrm{i}}=\frac{i}{i}
\end{aligned}
$$

$$
\begin{aligned}
& i_{o}=-h_{j_{e}} i_{0}\left(\frac{R_{3}}{R_{3}+R_{7}}\right) \\
& \mathrm{A}_{\mathrm{i}}=\frac{i_{o}}{i_{i}}=\frac{i_{o}}{i_{b}} \cdot \frac{i_{b}}{i_{i}}=-h_{f e}\left(\frac{R_{3}}{R_{3}+R_{7}}\right) \cdot\left(\frac{R_{I} / / R_{T H}}{\left(R_{I} / / R_{T H}\right)+h_{i e}}\right)=-33
\end{aligned}
$$

Impedance Reflection Concept

but $i_{e}=(\beta+1) i_{b}$

$$
\begin{aligned}
& v_{1}=R_{1} \cdot i_{b}+h_{i e} \cdot i_{b}+R_{2} \cdot(\beta+1) i_{b}+v_{2} \\
& i_{b}=\frac{v_{1}-v_{2}}{R_{1}+R_{2} \cdot(\beta+1)} \Leftarrow \text { base loop }
\end{aligned}
$$

equivalent circuit equation
(

base equivalent circuit

(reflection from emitter to base)
Here we must change i_{e} to i_{b} which requires division by $\left(h_{f e}+1\right)$, but voltage must remain the same and thus the resistance must be multiplied by the same factor $\left(h_{f e}+1\right)$

Emitter equivalent circuit

(reflection from base to emitter)
Here we must change i_{b} to i_{e} which requires multiplication by $\left(h_{f e}+1\right)$, but voltage must remain the same and thus the resistance must be divided by the same factor $\left(h_{f e}+1\right)$

Collector Equivalent Circuit

Note: there is no reflection from emitter to collector or vise versa since the ie and ic are almost the same

Common Collector Amplifier

Given

$$
\begin{gathered}
\mathrm{h}_{\mathrm{ie}}=1 \mathrm{k} \Omega \\
\mathrm{~h}_{\mathrm{fe}}=\beta=50
\end{gathered}
$$

Find Av, Ai, Zi, Zo
AC small signal Equivalent Circuit

$$
\begin{aligned}
& \text { 1) } \mathrm{A}_{\mathrm{v}}=\frac{v_{o}}{v_{s}} \\
& v_{o}=1 \mathrm{k} \Omega \cdot i_{e} \\
& i_{e}=i_{b}\left(\mathrm{~h}_{\mathrm{fe}}+1\right)
\end{aligned}
$$

i_{b} can be found from base equivalent circuit

$$
R_{T H}=20 \mathrm{k} \Omega / / 250 \mathrm{k} \Omega
$$

$$
i_{b}=i_{i} \frac{R_{T H}}{\left(R_{T H}\right)+\left(h_{i e}+1 \mathrm{k} \Omega\left(h_{f e}+1\right)\right)}
$$

$$
i_{i}=\frac{V_{S}}{R_{S}+\left(R_{T H} / /\left(h_{i e}+1 \mathrm{k} \Omega\left(h_{f e}+1\right)\right)\right)}
$$

$\therefore \mathrm{A}_{\mathrm{v}}=\frac{v_{o}}{v_{s}}=\frac{v_{o}}{i_{e}} \cdot \frac{i_{e}}{i_{b}} \cdot \frac{i_{b}}{i_{i}} \cdot \frac{i_{i}}{v_{s}}$
$=(1 \mathrm{k} \Omega) .\left(\mathrm{h}_{\mathrm{fe}}+1\right)\left(\frac{R_{T H}}{\left(R_{T H}\right)+\left(h_{i e}+1 \mathrm{k} \Omega\left(h_{f e}+1\right)\right)}\right)\left(\frac{1}{R_{S}+\left(R_{T H} / /\left(h_{i e}+1 \mathrm{k} \Omega\left(h_{f e}+1\right)\right)\right)}\right)$
$=0.915<1$

$$
\begin{aligned}
& \text { 2) } A_{i}=\frac{i_{o}}{i_{i}} \\
& i_{o}=\frac{v_{o}}{1 \mathrm{k} \Omega} \\
& i_{o}=i_{e}=i_{b}\left(h_{f e}+1\right) \\
& i_{b}=i_{i} \frac{R_{T H}}{\left(R_{T H}\right)+\left(h_{i e}+1 \mathrm{k} \Omega\left(h_{f e}+1\right)\right)} \\
& A_{i}=\frac{i_{o}}{i_{i}}=\frac{i_{o}}{i_{e}} \frac{i_{e}}{i_{b}} \cdot \frac{i_{b}}{i_{i}} \\
& =1\left(h_{f e}+1\right)\left(\frac{R_{T H}}{R_{T H}+[h i e+1 k(h f e+1)]}\right)=13.39>1
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3) } \mathrm{Z}_{\mathrm{I}}=\left(R_{T H} / /\left(h_{i e}+1 \mathrm{k} \Omega\left(h_{f e}+1\right)\right)\right) \\
& =13.66 \mathrm{k} \Omega \quad \text { (high })
\end{aligned}
$$

Emitter Equivalent Circuit $\& V_{S}=0$
$\left.\mathrm{Z}_{\mathrm{o}}\right|_{V_{s}=0}=\left(\frac{\left(R_{S} / / R_{T H}\right)+h_{i e}}{\left(h_{f e}+1\right)} / / 1 \mathrm{k} \Omega\right)$
$=\left(\left(\left(\frac{R_{S}}{\left(h_{f e}+1\right)} / / \frac{R_{T H}}{\left(h_{f e}+1\right)}\right)+\frac{h_{i e}}{\left(h_{f e}+1\right)}\right) / / 1 \mathrm{k} \boldsymbol{\mathrm { k }} \mathbf{\overline { \mathbf { N } }}\right)$
$=36.8 \Omega$ (low)

CC Amplifier as a Buffer

- The value of load resistor RL affects the voltage gain Av,
- This effect is called loading effect and can be substantial

- A buffer (interface) can be used between the amplifier and the load to reduce this loading effect and keep the high gain
- CC Amplifier is also known as Emitter Follower

CC Amplifier as a Buffer

- The buffer must have the following characteristic:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{V}} \approx 1 \\
& \mathrm{~A}_{\mathrm{I}}>1 \\
& \mathrm{Z}_{\mathrm{I}} \gg \text { high } \\
& \mathrm{Z}_{\mathrm{o}} \ll \text { low }
\end{aligned}
$$

- The above characteristic are present in the CC amplifier the load to reduce this loading effect and keep the high gain

Example

- First we consider effect of load (RL) on amplifier voltage gain
- Then we use a buffer and see its effect on reducing effect of RL

1) with $R_{L}=\infty$
$v_{o}=-h_{f e} i_{b} .\left(\mathrm{R}_{\mathrm{C}}\right)$
$i_{b}=\frac{v_{i}}{h_{i e}}$
$\mathrm{A}_{\mathrm{V}}=\frac{v_{o}}{v_{i}}=\left(-h_{f e} \mathrm{R}_{\mathrm{C}}\right) \cdot \frac{1}{h_{i e}}=-140$
2) with $R_{L}=50 \Omega$

$\mathrm{A}_{\mathrm{v}}=\frac{v_{o}}{v_{i}}=\left(-h_{f e} \mathrm{R}_{\mathrm{C}}\right) \cdot \frac{1}{h_{i e}}=-6.87$
Av have been reduced from - 140
to -6.87

Amplifier + Buffer + Load

Now let us look at the new circuit with the buffer

ac ss equivalent Circuit

$$
\begin{aligned}
& v_{o}=i_{e 2} \cdot\left(\mathrm{R}_{\mathrm{E} 2} / / \mathrm{R}_{\mathrm{L}}\right) \\
& i_{e 2}=i_{b 2}\left(1+h_{f e 2}\right) \\
& i_{b 2}=-h_{f e 1} \cdot i_{b 1} \frac{\left(R_{C 1} / / R_{B 2}\right)}{\left(\left(R_{C 1} / / R_{B 2}\right)+\left(h_{i e 2}+\left(R_{E 2} / / R_{L}\right)\left(1+h_{f e 2}\right)\right)\right)} \\
& i_{b 1}=\frac{V_{i}}{h_{i e 1}} \quad \Rightarrow A v=\frac{v_{o}}{v_{i}}=\frac{v_{o}}{i_{e 2}} \cdot \frac{i_{e 2}}{i_{b 2}} \cdot \frac{i_{b 2}}{i_{b 1}} \cdot \frac{i_{b 1}}{v_{i}}=-95.6
\end{aligned}
$$

This is much better than the case without buffer

Multistage Amplifiers

- The previous example of a CE amplifier with a CC buffer is an example of a multistage amplifier (two-stage amplifier)
- Multistage amplifiers can be used to get more gain and to improve the performance of the amplifier
- These amplifiers such that the Output of first stage is connected to input of second stage
- Capacitor C3 is a decoupling capacitor that separates the two stages for DC bias point stability, this makes the two stages completely separate in DC analysis and their Q-points are not affected by each other
- C2 is used as a bypass capacitor for stage 1 and allows stabilization of the Q-point, if C2 is removed the input impedance of the amplifier can be improved

Cascaded Systems

- The output of one amplifier is the input to the next amplifier
- The overall voltage gain is determined by the product of gains of the individual stages
- The DC bias circuits are isolated from each other by the coupling capacitors
- The DC calculations are independent of the cascading
- The AC calculations for gain and impedance are interdependent

R-C Coupled BJT Amplifiers

Voltage gain:

$$
A_{v}=A_{v 1} A_{v 2}
$$

Input impedance, first stage:

$$
Z_{i}=R_{1}\left\|R_{2}\right\| h_{i e 1}
$$

Output impedance, second stage:

$$
Z_{o}=R_{C}
$$

Cascode Connection

- This example is a CE-CB combination. This arrangement provides high input impedance but a low voltage gain.
- The low voltage gain of the input stage reduces the Miller
 input capacitance, making this combination suitable for highfrequency applications.

Exercise : Find Av, Zi and Zo

Darlington Connection

- The Darlington circuit provides very high current gain, equal to the product of the individual current gains:
- $\beta_{D}=\beta_{1} \beta_{2}$
- The practical significance is that the circuit provides a very high
 input impedance.

DC Bias of Darlington Circuits

Base current: $I_{B D}=I_{B 1}=\frac{V_{C C}-V_{B E D}}{R_{B}+\left(\beta_{D}+1\right) R_{E}}$
Emitter current: $I_{E D}=I_{E 2}$

$$
\begin{aligned}
& I_{E 2}=I_{B 2}\left(\beta_{2}+1\right) \\
& I_{B 2}=I_{E 1} \\
& I_{E 1}=I_{B 1}\left(\beta_{1}+1\right) \\
& I_{E 2}=I_{B 1}\left(\beta_{2}+1\right)\left(\beta_{1}+1\right) \\
& I_{E D}=\beta_{D} I_{B D}
\end{aligned}
$$

Emitter voltage:

$$
V_{E}=I_{E D} R_{E}
$$

Base voltage:

$$
\begin{aligned}
& V_{B}=V_{E}+V_{B E} \\
& V_{B E D}=V_{B E 1}+V_{B E 2} \cong 1.4 \mathrm{~V}
\end{aligned}
$$

$$
I_{B D} \underset{=B}{\overrightarrow{-1}}
$$

KVL for input loop :

$$
\begin{aligned}
& V_{C C}-I_{B 1} R_{B}-V_{B E 1}-V_{B E 2}-I_{E 2} R_{E}=0 \\
& V_{C C}-I_{B D} R_{B}-V_{B E D}-I_{E D} R_{E}=0
\end{aligned}
$$

$$
\begin{aligned}
& I_{E D} \\
& 0
\end{aligned}
$$

Darlington Pąir

Find Ratio of $\frac{i_{e 2}}{i_{b 1}}$ and A_{v}
$i_{e 2}=i_{b 2}\left(h_{f e 2}+1\right)$
$i_{b 2}=i_{e 1}$
$i_{e 1}=i_{b 1}\left(h_{f e 1}+1\right)$

$$
i_{e 2}=i_{b 1}\left(h_{f e 1}+1\right)\left(h_{f e 2}+1\right)
$$

C1

$$
\begin{aligned}
i_{e d} & =h_{f e d} i_{b d} \\
h_{f e d} & =\left(h_{f e 1}+1\right)\left(h_{f e 2}+1\right) \\
& \cong h_{f e 1} h_{f e 2} \\
& \cong h_{f e}^{2} \quad,\left(\text { if } h_{f e 1}=h_{f e 2}=h_{f e}\right)
\end{aligned}
$$

2) Find $\mathrm{A}_{\mathrm{v}}=\frac{v_{o}}{v_{i}}$

$$
\begin{aligned}
& v_{o}=i_{e 2} R_{E} \\
& i_{e 2}=i_{b 1}\left(h_{f e 1}+1\right)\left(h_{f e 2}+1\right) \\
& i_{b 1}=\frac{v_{i}}{Z_{i}}
\end{aligned}
$$

3) Find Z_{I}

base equivalent circuit is needed
 from emitter1 to base 1

$$
R_{E} \Rightarrow R_{E}\left(h_{f e 1}+1\right)\left(h_{f e 2}+1\right)
$$

since it is reflected twice

1) From $E 2$ to $B 2(B 2=E 1)$

$$
\mathrm{Z}_{\mathrm{I}}=h_{i e 1}+h_{i e 2}\left(h_{f e 1}+1\right)+R_{E}\left(h_{f e 1}+1\right)\left(h_{f e 2}+1\right)
$$

2) From E1 to B1
3) Find $\left.Z_{o}\right|_{V_{s}=0}$

Zo
Emitter equivalent circuit is needed

$$
\mathrm{Z}_{0}=\left(\frac{h_{i e 1}}{\left(h_{f e 1}+1\right)\left(h_{f e 2}+1\right)}+\frac{h_{i e 2}}{\left(h_{f e 2}+1\right)}\right) / / R_{E}
$$

Darlington Simplified Model

$$
\begin{aligned}
& h_{i e D} \cong 2 h_{i e} \\
& h_{f e D} \cong h_{f e 1} \cdot h_{f e 2}
\end{aligned}
$$

Base To Collector Feedback

Exercise : Find Av, Zi and Zo

Base To Collector Feedback

Exercise : Find Av, Zi and Zo

Base To Collector Feedback

$$
\begin{aligned}
& \mathrm{v}_{0}=-i_{o} \cdot R_{L} \\
& i_{o}=h_{f e} \cdot i_{b}+i_{F} \\
& i_{F}=\frac{v_{o}-v_{i}}{R_{F}}
\end{aligned}
$$

$$
i_{b}=\frac{v_{i}}{h_{i e}}
$$

$$
\mathrm{v}_{0}=-\left(h_{f e} \cdot \frac{v_{i}}{h_{i e}}+\frac{v_{o}-v_{i}}{R_{F}}\right) \cdot R_{L}
$$

$\mathrm{v}_{0}=-R_{L} h_{f e} \cdot \frac{v_{i}}{h_{i e}}-\frac{v_{o} R_{L}}{R_{F}}+\frac{v_{i} R_{L}}{R_{F}}$
$\mathrm{v}_{0}\left(1+\frac{R_{L}}{R_{F}}\right)=v_{i}\left(\frac{R_{L}}{R_{F}}-R_{L} \cdot \frac{h_{f e}}{h_{i e}}\right)$
$A v=\frac{\left(\frac{R_{L}}{R_{F}}-R_{L} \cdot \frac{h_{f e}}{h_{i e}}\right)}{\left(1+\frac{R_{L}}{R_{F}}\right)}$

$$
\begin{aligned}
& \left.\mathrm{Z}_{0}\right|_{v_{i}=0}=R_{F} / / R_{L} \\
& Z_{i}=\frac{v_{i}}{i_{i}} \\
& \mathrm{i}_{\mathrm{i}}=\mathrm{i}_{\mathrm{b}}-\mathrm{i}_{\mathrm{F}}=\left(\frac{v_{i}}{h_{i e}}-\frac{v_{o}-v_{i}}{R_{F}}\right) \\
& \mathrm{Z}_{\mathrm{i}}=\frac{\mathrm{v}_{\mathrm{i}}}{\mathrm{i}_{\mathrm{i}}}=\frac{\mathrm{v}_{\mathrm{i}}}{\left(\frac{v_{i}}{h_{i e}}-\frac{v_{o}-v_{i}}{R_{F}}\right)} \\
& =\frac{\mathrm{v}_{\mathrm{i}}}{\left(\frac{R_{F} v_{i}-h_{i e}\left(v_{o}-v_{i}\right)}{R_{F} h_{i e}}\right)} \\
& =\frac{\mathrm{v}_{\mathrm{i}} R_{F} h_{i e}}{\left(R_{F} v_{i}-h_{i e}\left(v_{o}-v_{i}\right)\right)} \\
& =\frac{v_{\mathrm{i}} R_{F} h_{i e}}{\left(\left(R_{F}+h_{i e}\right) v_{i}-h_{i e} v_{o}\right)} \\
& =\frac{R_{F} h_{i e}}{\left(\left(R_{F}+h_{i e}\right)-h_{i e} \frac{v_{o}}{v_{i}}\right)} \\
& =\frac{R_{F} h_{i e}}{\left(\left(R_{F}+h_{i e}\right)-h_{i e} \frac{v_{o}}{v_{i}}\right)} \\
& =\frac{R_{F} h_{i e}}{\left(\left(R_{F}+h_{i e}\right)-h_{i e} A_{v}\right)}
\end{aligned}
$$

r_{e} vs. h-Parameter Model

Common-Emitter

Common-Base

$$
\begin{aligned}
& h_{i b}=r_{e} \\
& h_{f b}=-\alpha \cong-1
\end{aligned}
$$

